T. Q3 ellasgre

. A CR70868

STEADY~STATE RESPONSE IN THE PARAMETER PLANE*

A

J.B. Moore**

N66 82159

{ACCESSION NUMBER) (THRU)

o~
[-3
[}
b3
[ 4
£ /¢ Ve
[
>
5 {(PAGES) ) {(CODE)
b
: P 705K
(NASA ER OR TMX OR AD NUMBER) {CATEGORY)

L

% J.B. Moore is with the Department of Electrical Engineée ing,
University of Santa Clara, Santa Clara, California.

* The research reported herein was supported by the Natj eroe-
nautics and Space Administration under Contract No. ASZ-2609.>



¢ .

STEADY-STATE RESPONSE IN THE PARAMETER PLANE

L1

J.B. tloore

Summary: This paper considers the adjustment of parameters in
Tinear control systems to meet both steady-state and transient
response specifications. A graphical method using parameter
plane techniques is presented whereby the steady-state error
may be minimized while being constrained by the transient
response requirements. Ancther method is proposed whereby,
for a specified steady-state response, the transient response
is given in evidence as a function of three system parameters.
The procedures are illustrated by examples for both continuous
and sampled-data multi-loop control systems.

The problem of linear control system design can be interpreted as
the adjustment of the system parameters to meet both steady-state and
transient response requirements. The éiljak parameter plane method1'3
gives in evidence the pole-zero locations of a system closed-loop trans-
fer function in terms of two system parameters. In the application of
the method, the transient response requirements are translated into
constraints imposed on the pole-zero configuration of the system
transfer function. The steady-state response on the other hand, can
be specified by the error constants. As shown in this paper, the
error constants are functions of adjustable system parameters and may
be introduced imo the parameter plane. This enables the steady-state
and transient response to be considered simultaneously in a control
system design.

Two graphical design procedures are presented. In the first,
error constant contours are plotbed on the parameter plane enabling
the steady-state error to be minimized subject to constraints imposed
on the system pole-zero locations. In the second procedure, the
transient response is studied on the parameter plane for a specified

error constant, and is given in evidence as a function of three system
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parameters., ‘
The parameter plane curves are readily plotted using a digital.
computer, and so the methods are presented as a practical approach to
the design of linear conﬁrol systems. In the following sections, the
parameter plane approach and the error constant definitions are: =
reviewed for reference, the two design procedures are developed, and

examples illustrating the procedures are discussed for both continuous

and sampled-data multi-loop control systems.

SUMMARY OF THE PARAMETER PLANE METHOD

The characteristic equation considered in the design of linear

continuous systems. is

f(s) =" g a, sk = 0. (1)

k=0 ¥
The complex roots of equation 1 are expressed in terms of their damping

ratio ..( and their natural frequency w,

s 2
S=-'vn\CiJu)n1-C (2)
Substituting equation 2 into equation 1 results in two equations

which may be manipulated and conveniently expressed in terms of the

Chebyshev functions as follows

m
T (-1)K a, w XU (c)=0
k=0 k "n k
(3)
T (=18 a U _,(0) =0
%=0 k "n Tke1000

The Chebyshev functions Uy(({) may be calculated from the'recurrgﬁce
‘ . \

Y



relationship

U, () = 26U (c) + U, () =0 ()

where Uo(c) = 0 and U1(g) = 1.

The coefficients of the characteristic equation are expressed as

a, =b a+c B +Hh ap +d (5)
where b, Cye hk, and dk are functions of the fixed parameters of
the system and are therefore. of known numerical value, and a and
B are the two system parameters to be selected in the design.

'The substitution of equation 5 into equation 3 results in two

equétions
AN
By a + C1 B+ HyaBg + Dg = 0
(6)
BZ a + 02 B + HZ a8 + D2 = 0
where
m - om
k | k . k | k .
B, = 5 (=1)%1b, w.fU (¢}, B, = % (-1)°b, w = U(¢),
1 k=0 k n k=1 2 k=0 k n k-
m ‘ m
_ m k Koo - 4k Kk o
Cy o (=107 e w ~ U 4{€)s C, o (-1)% ¢, w " U lc)
m o : y (7)
. k . K . k .
Hy == % (=1)%nh, ws& U, 5(¢), H, = T (~1)*h w, U, (¢)".
1 k=0 k 'n k-1 ’ 2 k=0 k “n k
m k k m k k .
D, = v (=1) d, w U o(¢) D, = % (=-1) d, w U (¢)
1 k=0 k n k=1 ? 2 k=0 k n k

By solving equatibns 6 for @« and B8, the ¢ and w, curves
are plotted in the aB-plane. The complex roots of equation 1 are
then determined by interpolating between these curves.

When the roots of the characteristic equation are real, i.e.,
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s; - o, equation 1 may be expressed as

a II‘Z‘bk(--or)k+.‘3 gllck(—-o)}_(+c.8 mhk'(-o)k+ IS],}dk(--cy)k-ro (8)

k=0 k=0 k=0 k=0

Constant ¢ lines are readily plotted in the parameter plane using
equation 8. Therefore, both real and complex roots are given in
evidence as functions of a and 8.

For sampled-data systems, z-transform theory is applied and the

characteristic equation is expressed as follows
f{z) = * azX=0 4 (9)
where
2 = ¢°7 ;o (10)
T being the sampling period.
The complex roots of ‘f(z)==04 are expressed in terms of the

z-plane damping ratio (, and the z-plane natural frequency w, .

zZ=w, (005-1(§ )=ngz ij w, /9. sz . (11)

«

The real roots of f(z}) are given by

N
Z = -GZ v (12)

The form of these equations is similar to that given for continuous
systems. UBOquations 6, 7, and 8 may therefore be used to map the para-
meter plane in terms of (¢ and . for a sampied-data system by making
the folloWing substitutions derived from equations 2, 10, 11 and 12.

exp(-w, ¢ T) for y
-cos{m T /y_ 2 for ¢ ' (13)
exp{-g T) for g . | q

The only portion of the s-plane considered is the primary strip; i.e.,

lw ,/1_C2‘5n/T .
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ERROR CONSTANTS

The symbol K, will be used to represent either the position

error constant Kp,

the velocity error constant K., or the acceleration

constant K,. The error constants are defined for the continuous system

and sampled-data system as follows.

For Continuous Systems

(Kp = lims-.o G(s) Kp

Kv = lims_,o s G(s) KV
= 13 2

K llms_;.o 5 G(s) K,

=

—
=

=

lim
lim

lim

z -1

z—1

Z

~» 1

For Sampled-Data Systems

G(z)
(1-2) G(z)/T
(1-2)% G(z)/T?

where G(s) and G(z) are the system open-loop transfer functions.

The steady-state errors for a unit step function, ramp or parabolic

input to the system are given by 1/(14-Kp), 1/K,, 1/K,, respectively.

The next section considers the minimization of a system steady-

state error subject to the transient response specifications. The

(14)

analytical maximization of K subject to relative stability constraints
e J

is considered and then the graphical maximization of K,

on the para-

meter plane subject to the transient response specifications is intro-

duced and illustrated by examples.

MINIMIZATION OF STEADY-STATE ERROR ON THE o3-PLANE

Consider the error constant Kg; expressed as a function of the

two system parameters a and B.

Ke = Ke(a,s)

The solutions of the simultaneous equations

3K dK .
e e
v an Y 0

which satisfy the conditions.

(15)

(16)
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3%K 2°K_
< 0,

aa2

2 2
2k, 2K,
5538 - 2?2 32 0 (17)

are the maxima values of K, on the aB-plane. The absolute maximum
Ke 1s therefore readily determined. However, the transient response
associated with this value of K, is usually not acceptable. To ensure
a more acceptable transient response, relative stability constraints may
be included into the analytical derivation as follows.

Consider the maximization of Ko subject to the constraints that
all the roots of the characteristic equation have damping ratios ¢(
greater than or equal to the prescribed value Co; i.e., € z Co' The
region' of interest in the af-plane is therefore bounded by the g==§o
curve. If the maximum Ke for this region occurs inside the boundary,
then its value may be determined from equations 16 and 17. If the maximum
Ke for the region does not occur inside the boundary, then it occurs on

the boundary itself and its value may be calculated from the following

equation
3K
Wy =G X “n duy " C=C;

and the condition 3%k

() <0 .

awr?' C—CO
The partial derivatives ;S and -gg— may be obtained from equations 6

n no

and 7 in a straightforward manner, but the calculation of the maxima
values of K, may become tedious as the roots of a high degree algebraic

equation in w, must be found and examined.

n
The constraints (=X Qo are not sufficient to ensure an acceptable
transient response, but to include further constraints analytically

would be difficult. Using the parameter plane; however, the problem of
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Jdjusting the system parameters to give the best compromise between

steady-state and transient response may be attempted by plotting contours

of constant K, on the as8-plane., The curves are interpreted as in the

following examples.
Consider the system of Fig. 1 where

K2
'8(82*-0.88+'1)

-x As¥) -
G,(8) = K, —55.37 Gp(s)

S 9 G = K 320

G_1 (S) = K- -2 -2

1

The system characteristic equation is

544-(a+1)334-(O.2a4—54—1.16)524-(O.234—¥4-0.2)s+-x = 0 (19)

where a=K_.K and B=K

Ko K, and ¥ =KK,.

1 172

The error constant K, can be expressed as

2

5
Ky = el 20
V. 0,2(148) (20}

Fig. 2 gives the parameter plane curves for the condition ¥ =20. By
plotting just a few ( lines, the region of interest in the ag-plane
is evident. It is seen that perhaps the best compromise between the
steady-state and the transient response for a specified go is notv at
the point of maximum K, given by analytical methods (e.g., M, for
{O==O.5; M, for co==0.3), but in the region where the real axis
characteristic roots are conveniently located (e.g., M3 for CO==O.3).

In a system design, the transient response may be calculated at
points of interest in the parameter plane. The roots of the character-
istic equation for these points may be found approximately by interpola-
tion from the parameter plane or, more accﬁ}ately, by an iterative method,

In the example, the characteristic equation roots M;, M,, M3 are given

as follows.
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M, : M, ‘ My
g1 = 0.5 A C1 = 0,3 C1 = 0.3
W, = 2.25 w, = 2.25 | w, = 1.25
1 1 1 .
¢, = 0.69 c, = 0.86 0o, = 1.7
'Unz = 1.99 UJnZ = 1098 0’2 = 7014»

For the regions M, and M,, the two pairs of complex poles are now
given explicitly, and it is seen that for the regions M, and M,
the transient response is unacceptable. The response for the region
M1 may be calculated\using Laplace transform methods and a design
compromise achieved. Further, the af-plane curves may be replotted for
different specified parameters in order to explore the possibilities of
an improved design. Usually, when a time constant is considered as the
one parameter a, and a gain as the other parameter 8, aB-product terms
appear in the characteristic equation and the results of reference 2
are used to plot the parameter plane.

Consider as a second example the sampled-data system given in
Fig. 33 where the sampling period T 1s one second and

Ts

. - Ko
= | = & C = e
Gyle) = —=—— G2(s) = 5775
0. 741 Kh 5 ‘ 199K_? S
G, (s) = s(s+3.9) 8 ==
the z-transforms of interest are
_ 0.91 N - 0.1L2z+ 0,186
G162(2) = Ky =57y » 638,020 = K, GV (e-0.02)
\ 0.139z + 0,019
GGG z) = KK
37 (2

L'=1(2-0,15)(z- 0.02) '




" The '‘characteristic equation may be written as follows.
£(z) =z%+ (0.1890 ~ 2)23+ (-0.237a + 0.0928 + 1.14 )22

+ (0.0810.+ 0.0148 = 0,146)z + (0.01a -~ 0.0048 -~ 0.002) = O
(21)

where cx=Kl+K_1 and B=K2Kh.

The error constant K, is given from the definition 15 as

= _1.7638 | (22)
v 14+0.19a

The maximum X, for a specified settling time is given in evidence in
Fig. L. For a settling time mnc==0.1; i.e., mz=?O.905, the maximum

Ky, occurs at the point M in Fig. & (i.e., K ,=2.7). It is to be

v
noted that the steady-state errors are given only at the sampling instants,
The parameter plane in these examples may be plotted with the error
constant as one of the axis. All that is required is that the equation
for K, Dbe incorporated intc the computer program which calculates the
various parameter plane curves. The parameter plane method is not
limited to the damping ratic {() and the settling time {w () contours as
illustrated in the above examples, but any convenient contour may be
plotted and. therefore. other stability constraints may be considered in
a system design.
The error constant for a system may be specified, in which case the
transient response may be investigated as a function of a,é, and a
third parameter ¥ on a single parameter plane diagram. This case is
now considered.

THREE-PARAMETER PROBLEM

If the error constant K, is specified, the parameter plane method
may be extended to svudy the characteristic equation root locations as a
function of three parameters, The effect of adjusting the two parameters

a and B may be studied on the as-plane, and for each point a third
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prrameter ¥ is then given as a known function of a, 8, and Kee An
example from the preceeding section is used to illustrate the design
procedure. For the system of Fig., 1, if Kv is specified, the character-
istic equation may be expressed in terms of a and B by eliminating

the third. parameter ¥ .from equations 19 and 20. For K, =10, ¥ =2(148)

and
s+ (a+1)s+ (0.2a+8+1,16)s5+ {2.28+2.2)s+ {(28+2)=0 . (23)

From the parameter plane p;ot of equation 23 in Fig. 5, it is seen that
« and 8 may be selected to give a good transient response and ¥ may
then be calculated for trial points and the system designed (e.g., for
M, ¢=0.5, =2.5, ¢

=1.5, a,=2.1). This approach to the simultaneous

“n 1 2
consideration of steady-state and transient response enables the designer
to examine readily the effectiveness of various compensating networks.

All that is required is the interpretation of the parameter plane diagrams

corresponding to each proposed system.

CONCLUSIONS

It has been shown that the steady-state and transient response may
be considered simultaneously in a linear control system design using the
parameter plane. Two procedures were developed and illustraved by
examples of both continuous and sampled-data multi-loop control systems.
In the first procedure, the steady-state error was minimized subject to
the transient response requirements; while in the second procedure, the
effects of three system parameters on the transient response were given
in evidence for a specified error constant.

The scope of the problem discussed in this paper is but one aspect
of the more general problem of introducing specifications and constraints
intc the analytical or graphical design prokedures in order to give in
evidence more relevant information for the system design. The work of

this paper may be extended to include more directly the transient
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reéponse specifications into the design procedures such that the effect

of more system parameters may be considered.
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CAPTIONS

System Block Diagram
Maximization of the Error Constant

System Block Diagram

Maximization of K, in a Sampled-Data System -

Parameter Plane Diagram for a Specified 'Kv.
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